LESSON 1

SOLVING SYSTEMS OF LINEAR EQUATIONS: THREE VARIABLES

SOLVING BY ELIMINATION

When solving systems of equation with three variables we use the elimination method or the substitution method to make a system of two equations in two variables.

Steps to solve a linear system of three variables by elimination:

- 1. Pick any pair of equations and solve for one variable.
- 2. Pick another pair of equations and solve for the same variable.
- 3. A system of two equations in two unknowns is now created. Solve the resulting two equations.
- 4. Back-substitute known variables into any one of the original equations and solve for the missing variables.

Example 1

```
5x-2y-4z = 3 equation 1

3x+3y+2z = -3 equation 2

-2x+5y+3z = 3 equation 3
```

Step 1: Pick any pair of equations and solve for one variable.

We choose to eliminate y using equation 1 and equation 2. Proceed by multiplying equation 1 by 3 and equation 2 by 2.

Step 2: Pick another pair of equations and solve for the same variable.

Here we choose equation 2 and equation 3. Multiply equation 2 by 5 and equation 3 by 3.

```
3x + 3y + 2x = -3 equation 2 \times -5 \Rightarrow -15x - 15y - 10z = 15

-2x + 5y + 3z = 3 equation 3 \times 3 \Rightarrow -6x + 15y + 9z = 9

-21x - z = 24 equation 5
```

Step 3: A system of two equations in two unknowns is now created. Solve the resulting two equations.

$$21x-8z = 3$$
 equation 4
 $-21x-z = 24$ equation 5
 $-----$
 $-9z = 27 \Rightarrow z = -3$

Step 4: Back-substitute the known variables into any one of the original equations and solve for the missing variables.

Substitute z = -3 in equation 1, 5x - 2y - 4z = 35x - 2y - 4z = 35x - 2y - 4(-3) = 35x - 2y = -9

Next, substitute z = -3 in equation 2.

$$3x + 3y + 2z = -3$$

$$3x + 3y + 2(-3) = -3$$

$$3x + 3y = 3$$

$$5x - 2y = -9 \times 3 \Rightarrow 15x - 6y = -27$$

$$3x + 3y = 3 \times 2 \Rightarrow 6x + 6y = 6$$

$$21x = -21 \Rightarrow x = -1$$

Next, substitute x = -1, and z = -3 in equation 3 to solve for y.

$$-2x + 5y + 3z = 3$$

$$-2(-1) + 5y + 3(-3) = 3$$

$$2 + 5y - 9 = 3$$

$$5y = 10 \Rightarrow y = 2$$
Thus, $x = -1$, $y = 2$, and $z = -1$

Thus, x = -1, y = 2, and z = -3

Example 2

$$-3a - b - 3c = -8$$

 $-5a + 3b + 6c = -4$

$$-6a - 4b + c = -20$$

Step 1: Pick any pair of equations and solve for one variable.

We choose to eliminate b using equation 1 and equation 2. Proceed by multiplying equation 1 by 3 and leaving equation 2 as it is.

Step 2: Pick another pair of equations and solve for the same variable.

Here we choose equation 2 and equation 3. Multiply equation 2 by 4 and equation 3 by 3.

Step 3: A system of two equations in two unknowns is now created. Solve the resulting two equations.

Step 4: Back-substitute known variables into any one of the original equations and solve for the missing variables.

Now substitute a = 2 in equation 1, -3a - b - 3c = -8.

$$-3(2) - b - 3c = -8$$

 $-6 - b - 3c = -8$
 $-b - 3c = -2$ equation 6

Next substitute a = 2 in equation 2, -5a + 3b + 6c = -4.

$$-5a + 3b + 6c = -4$$

$$-5(2) + 3b + 6c = -4$$

$$-10 + 3b + 6c = -4$$

$$3b + 6c = 6 \text{ equation } 7$$

Solving equations 6 and 7 we obtain, b = 2.

To solve for c, we substitute the values for a and b in any of the three original equations. We use equation 3 for this purpose.

$$-5a + 3b + 6c = -4$$

$$-5(2) + 3b + 6c = -4$$

$$-10 + 3b + 6c = -4$$

$$3b + 6c = 6 \text{ equation } 7$$

Thus, a = 2, b = 2, and c = 0.

Lesson 1 Exercise

Solve each system by elimination.

1)
$$-x-5y-5z=2$$

 $4x-5y+4z=19$
 $x+5y-z=-20$

2)
$$-4x - 5y - z = 18$$

 $-2x - 5y - 2z = 12$
 $-2x + 5y + 2z = 4$

3)
$$-x-5y+z=17$$

 $-5x-5y+5z=5$
 $2x+5y-3z=-10$

4)
$$4x + 4y + z = 24$$

 $2x - 4y + z = 0$
 $5x - 4y - 5z = 12$

5)
$$4r-4s+4t=-4$$

 $4r+s-2t=5$
 $-3r-3s-4t=-16$

6)
$$x-6y+4z=-12$$

 $x+y-4z=12$
 $2x+2y+5z=-15$

7)
$$x-y-2z=-6$$

 $3x+2y=-25$
 $-4x+y-z=12$

8)
$$5a + 5b + 5c = -20$$

 $4a + 3b + 3c = -6$
 $-4a + 3b + 3c = 9$