LESSON 1

FACTORING BY GROUPING

Factoring out the Greatest Common Factor (GCF)

Factoring is a technique that is useful when trying to solve polynomial equations algebraically. We begin by looking for the Greatest Common Factor (GCF) of a polynomial expression. The GCF is the largest monomial that divides (is a factor of) each term of the polynomial.

Example 1.

$$3y^{4} + 9y^{2} - 6y^{3} - 18y$$

= $3y[y^{3} + 3y - 2y^{2} - 6]$ Factor out the GCF.
= $3y[y(y^{2} + 3) - 2(y^{2} + 3)]$ Factor by grouping.
= $3y[(y^{2} + 3)(y - 2)]$
= $3y(y^{2} + 3)(y - 2)$

Factoring when there is no GCF for all the terms

First group the first two terms together, then group the last two terms together, next factor out a GCF from each separate binomial, then factor out the common binomial.

Example 2.

- 1. Divide the polynomial into two groups: 1^{st} half and 2^{nd} half. $2x^3 - 10x^2 + 3x - 15$
- 2. Factor the GCF out of the 1st half and factor the GCF out of the 2nd half. $2x^2(x-5) + 3(x-5)$
- You should have a common binomial/trinomial factor.
 2x² (x 5) + 3 (x 5)
- 4. Factor out the common binomial/trinomial factor. $(x-5)(2x^2+3)$

Example 3.

In the example below there is no GCF for the polynomial so we divide it into two parts as shown.

 $6n^{3} + 3n^{2} + 8n + 4$ $(6n^{3} + 3n^{2})(+8n + 4)$ $3n^{2}(2n + 1) + 4(2n + 1)$ $(3n^{2} + 4)(2n + 1)$

After dividing the polynomial, factor the first part by $3n^2$ and the second part by 4. So, we now have the third line as shown above. Factoring the common binomial factor, we obtain the fourth line above.

Lesson 1 Exercise

Factor each completely.

1)
$$14x^3 - 10x^2 + 21x - 15$$

2)
$$2x^3 - 5x^2 + 16x - 40$$

3) $20b^3 + 25b^2 - 28b - 35$

4) $35a^3 - 56a^2 - 10a + 16$

5) $30k^3 + 35k^2 + 24k + 28$

6) $14v^3 + 49v^2 - 4v - 14$

7)
$$8p^3 + 56p^2 - 7p - 49$$

8) $n^3 - 2n^2 - 4n + 8$