0

An exterior angle of a triangle is formed by any side of a triangle and the extension of its adjacent side.

  1. The exterior angle of a triangle is equal to the sum of the two opposite interior angles.
  2. The exterior angle and the adjacent angle next to it form a Linear Pair (sum to 1800). 

Example 1

Find the value of the missing angles.

The exterior angle of a triangle is equal to the sum of the two opposite interior angles.

Therefore, x = 620 + 510 = 1130.

The exterior angle and the adjacent angle next to it form a Linear Pair (sum to 1800). 

Therefore, x + y = 1800. Then, y = 1800 – 113 = 670.

Example 2

Find the value of the missing angles.

x = 1800 – 1200 = 600.

y = 1200 – 700  = 500.

Example 3

Find the value of the missing angles.

The exterior angle of a triangle is equal to the sum of the two opposite interior angles.

Then, 11x + 2 = (5x + 10) + 58

    11x + 2 = 5x + 68

    – 5x  – 2 = -5x   – 2

    ———————–

            6x = 66

  x = 11

Therefore, 11x + 2 = 11(11) + 2 = 123. (angle AUT)

Also, 5x + 10 = 5(11) = 10 = 65 (angle T)

And 180 – 123 = 57 (angle TUS)

Solve the following problems.

Solve for all the missing angles.

SOLUTIONS

  1. 700 
  2. 650
  3. 1200
  4. 1050
  5. 950
  6. 300
  7. 360
  8. 1300
  9. 12
  10. 11
  11. 4
  12. 12
  13. 3
  14. 3
  15. 400
  16. 380
  17. 750
  18. 1400